Esferas de grasa y ARN sintético: ingredientes para la vacuna de la covid-19

Muchos países han comenzado un programa de inmunización, poniendo las vacunas de ARN mensajero (ARNm) en el centro de atención. Tan solo 66 días separan la secuenciación del genoma del SARS-CoV-2 del primer ensayo clínico. Este rápido desarrollo y alta eficacia (95%) han planteado preguntas sobre el mecanismo de funcionamiento de estos productos.

El ARN mensajero de las vacunas de Moderna y BioNTech/Pfizer porta la información necesaria para fabricar la proteína de la espícula S (spike) del coronavirus SARS-CoV-2 y así activar la respuesta inmune. La elegancia de este método consiste en que no se necesitan cultivos de células para producir virus atenuados o grandes factorías para sintetizar y purificar proteínas víricas. Este trabajo laborioso se desarrolla con la maquinaria de la propia célula. El código genético es la “piedra Rosetta” que hace posible traducir una secuencia de ARN mensajero en una proteína.

Sin embargo, el ARN mensajero es una molécula frágil de corta duración. Se degrada en las células humanas en un promedio de 10 horas y es destruido por enzimas ribonucleasasas. Entonces, ¿cómo es posible que el ARN mensajero se pueda usar como vacuna si nada más entrar en nuestro cuerpo es destruido por nuestras defensas?

El éxito de las vacunas de ARN mensajero es el fruto de la investigación básica que se ha ido acumulando durante más de tres décadas. Entre los numerosos avances que han posibilitado este hito científico caben destacan dos: la capacidad de sintetizar ARN modificado y el mecanismo de transporte a la célula.

Esta ingeniosa bioingeniería garantiza que el ARNm se procese correctamente dentro de la célula, se traduzca en proteína (curiosamente con mayor capacidad), se exponga en la membrana celular y desencadene la respuesta inmune contra el virus.

BionTech/Pfizer y Moderna usan la misma tecnología para encapsular ARNm en nanopartículas lipídicas. Sin embargo, difieren en la composición de los lípidos que usan. Esto unido a posibles diferencias en la estructura y termoestabilidad del ARNm, hace que Pfizer recomiende la conservación de la vacuna a -70 °C, mientras que Moderna garantiza la estabilidad de la vacuna a -20 °C. Los detalles de la receta para producir LNPs están protegidas por una patente pero se pueden deducir de los informes de autorización de la FDA mRNA-1273 y BionTech/Pfizer BNT162b2 (Comirnaty).

La vacuna de Oxford/AstraZeneca ChAdOx1 usa un adenovirus de chimpancé modificado para trasportar ADN que codifica la proteina de la espícula. Su mecanismo es distinto de las anteriores y se puede conservar a 4 °C.

Estas vacunas son la gran esperanza en esta pandemia y futuras enfermedades, pero también son claro ejemplo de las sinergias entre diversas disciplinas como la biología molecular, la nanotecnología y la ciencia de la materia blanda (soft matter). Una vez más, la ciencia básica proporciona los ingredientes para una revolución tecnológica, como lo son las vacunas ARNm.

Comparte

× ¿Cómo puedo ayudarte?